Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
PNAS Nexus ; 3(4): pgae147, 2024 Apr.
Article En | MEDLINE | ID: mdl-38638834

With continuing global warming and urbanization, it is increasingly important to understand the resilience of urban vegetation to extreme high temperatures, but few studies have examined urban vegetation at large scale or both concurrent and delayed responses. In this study, we performed an urban-rural comparison using the Enhanced Vegetation Index and months that exceed the historical 90th percentile in mean temperature (referred to as "hot months") across 85 major cities in the contiguous United States. We found that hot months initially enhanced vegetation greenness but could cause a decline afterwards, especially for persistent (≥4 months) and intense (≥+2 °C) episodes in summer. The urban responses were more positive than rural in the western United States or in winter, but more negative during spring-autumn in the eastern United States. The east-west difference can be attributed to the higher optimal growth temperatures and lower water stress levels of the western urban vegetation than the rural. The urban responses also had smaller magnitudes than the rural responses, especially in deciduous forest biomes, and least in evergreen forest biomes. Within each biome, analysis at 1 km pixel level showed that impervious fraction and vegetation cover, local urban heat island intensity, and water stress were the key drivers of urban-rural differences. These findings advance our understanding of how prolonged exposure to warm extremes, particularly within urban environments, affects vegetation greenness and vitality. Urban planners and ecosystem managers should prioritize the long and intense events and the key drivers in fostering urban vegetation resilience to heat waves.

2.
Front Plant Sci ; 14: 1279963, 2023.
Article En | MEDLINE | ID: mdl-38053761

Introduction: The photosynthetic electron transport chain (ETC) is the bridge that links energy harvesting during the photophysical reactions at one end and energy consumption during the biochemical reactions at the other. Its functioning is thus fundamental for the proper balance between energy supply and demand in photosynthesis. Currently, there is a lack of understanding regarding how the structural properties of the ETC are affected by nutrient availability and plant developmental stages, which is a major roadblock to comprehensive modeling of photosynthesis. Methods: Redox parameters reflect the structural controls of ETC on the photochemical reactions and electron transport. We conducted joint measurements of chlorophyll fluorescence (ChlF) and gas exchange under systematically varying environmental conditions and growth stages of maize and sampled foliar nutrient contents. We utilized the recently developed steady-state photochemical model to infer redox parameters of electron transport from these measurements. Results and discussion: We found that the inferred values of these photochemical redox parameters varied with leaf macronutrient content. These variations may be caused either directly by these nutrients being components of protein complexes on the ETC or indirectly by their impacts on the structural integrity of the thylakoid and feedback from the biochemical reactions. Also, the redox parameters varied with plant morphology and developmental stage, reflecting seasonal changes in the structural properties of the ETC. Our findings will facilitate the parameterization and simulation of complete models of photosynthesis.

3.
Plant Physiol ; 193(4): 2398-2412, 2023 Nov 22.
Article En | MEDLINE | ID: mdl-37671674

Genetically improving photosynthesis is a key strategy to boosting crop production to meet the rising demand for food and fuel by a rapidly growing global population in a warming climate. Many components of the photosynthetic apparatus have been targeted for genetic modification for improving photosynthesis. Successful translation of these modifications into increased plant productivity in fluctuating environments will depend on whether the electron transport chain (ETC) can support the increased electron transport rate without risking overreduction and photodamage. At present atmospheric conditions, the ETC appears suboptimal and will likely need to be modified to support proposed photosynthetic improvements and to maintain energy balance. Here, I derive photochemical equations to quantify the transport capacity and the corresponding reduction level based on the kinetics of redox reactions along the ETC. Using these theoretical equations and measurements from diverse C3/C4 species across environments, I identify several strategies that can simultaneously increase the transport capacity and decrease the reduction level of the ETC. These strategies include increasing the abundances of reaction centers, cytochrome b6f complexes, and mobile electron carriers, improving their redox kinetics, and decreasing the fraction of secondary quinone-nonreducing photosystem II reaction centers. I also shed light on several previously unexplained experimental findings regarding the physiological impacts of the abundances of the cytochrome b6f complex and plastoquinone. The model developed, and the insights generated from it facilitate the development of sustainable photosynthetic systems for greater crop yields.


Cytochrome b6f Complex , Photosynthesis , Electron Transport/physiology , Photosynthesis/physiology , Oxidation-Reduction , Cytochrome b6f Complex/metabolism , Photosystem II Protein Complex/metabolism , Photosystem I Protein Complex/metabolism
4.
Glob Chang Biol ; 29(11): 2893-2925, 2023 06.
Article En | MEDLINE | ID: mdl-36802124

Although our observing capabilities of solar-induced chlorophyll fluorescence (SIF) have been growing rapidly, the quality and consistency of SIF datasets are still in an active stage of research and development. As a result, there are considerable inconsistencies among diverse SIF datasets at all scales and the widespread applications of them have led to contradictory findings. The present review is the second of the two companion reviews, and data oriented. It aims to (1) synthesize the variety, scale, and uncertainty of existing SIF datasets, (2) synthesize the diverse applications in the sector of ecology, agriculture, hydrology, climate, and socioeconomics, and (3) clarify how such data inconsistency superimposed with the theoretical complexities laid out in (Sun et al., 2023) may impact process interpretation of various applications and contribute to inconsistent findings. We emphasize that accurate interpretation of the functional relationships between SIF and other ecological indicators is contingent upon complete understanding of SIF data quality and uncertainty. Biases and uncertainties in SIF observations can significantly confound interpretation of their relationships and how such relationships respond to environmental variations. Built upon our syntheses, we summarize existing gaps and uncertainties in current SIF observations. Further, we offer our perspectives on innovations needed to help improve informing ecosystem structure, function, and service under climate change, including enhancing in-situ SIF observing capability especially in "data desert" regions, improving cross-instrument data standardization and network coordination, and advancing applications by fully harnessing theory and data.


Ecosystem , Photosynthesis , Chlorophyll , Fluorescence , Seasons
5.
Plant Cell Environ ; 46(5): 1540-1561, 2023 05.
Article En | MEDLINE | ID: mdl-36760139

A photochemical model of photosynthetic electron transport (PET) is needed to integrate photophysics, photochemistry, and biochemistry to determine redox conditions of electron carriers and enzymes for plant stress assessment and mechanistically link sun-induced chlorophyll fluorescence to carbon assimilation for remotely sensing photosynthesis. Towards this goal, we derived photochemical equations governing the states and redox reactions of complexes and electron carriers along the PET chain. These equations allow the redox conditions of the mobile plastoquinone pool and the cytochrome b6 f complex (Cyt) to be inferred with typical fluorometry. The equations agreed well with fluorometry measurements from diverse C3 /C4 species across environments in the relationship between the PET rate and fraction of open photosystem II reaction centres. We found the oxidation of plastoquinol by Cyt is the bottleneck of PET, and genetically improving the oxidation of plastoquinol by Cyt may enhance the efficiency of PET and photosynthesis across species. Redox reactions and photochemical and biochemical interactions are highly redundant in their complex controls of PET. Although individual reaction rate constants cannot be resolved, they appear in parameter groups which can be collectively inferred with fluorometry measurements for broad applications. The new photochemical model developed enables advances in different fronts of photosynthesis research.


Chlorophyll , Photosystem I Protein Complex , Electron Transport , Photosystem I Protein Complex/metabolism , Chlorophyll/chemistry , Photosynthesis , Oxidation-Reduction , Plastoquinone , Cytochrome b6f Complex/metabolism , Photosystem II Protein Complex/metabolism
6.
Glob Chang Biol ; 29(11): 2926-2952, 2023 06.
Article En | MEDLINE | ID: mdl-36799496

Solar-induced chlorophyll fluorescence (SIF) is a remotely sensed optical signal emitted during the light reactions of photosynthesis. The past two decades have witnessed an explosion in availability of SIF data at increasingly higher spatial and temporal resolutions, sparking applications in diverse research sectors (e.g., ecology, agriculture, hydrology, climate, and socioeconomics). These applications must deal with complexities caused by tremendous variations in scale and the impacts of interacting and superimposing plant physiology and three-dimensional vegetation structure on the emission and scattering of SIF. At present, these complexities have not been overcome. To advance future research, the two companion reviews aim to (1) develop an analytical framework for inferring terrestrial vegetation structures and function that are tied to SIF emission, (2) synthesize progress and identify challenges in SIF research via the lens of multi-sector applications, and (3) map out actionable solutions to tackle these challenges and offer our vision for research priorities over the next 5-10 years based on the proposed analytical framework. This paper is the first of the two companion reviews, and theory oriented. It introduces a theoretically rigorous yet practically applicable analytical framework. Guided by this framework, we offer theoretical perspectives on three overarching questions: (1) The forward (mechanism) question-How are the dynamics of SIF affected by terrestrial ecosystem structure and function? (2) The inference question: What aspects of terrestrial ecosystem structure, function, and service can be reliably inferred from remotely sensed SIF and how? (3) The innovation question: What innovations are needed to realize the full potential of SIF remote sensing for real-world applications under climate change? The analytical framework elucidates that process complexity must be appreciated in inferring ecosystem structure and function from the observed SIF; this framework can serve as a diagnosis and inference tool for versatile applications across diverse spatial and temporal scales.


Chlorophyll , Ecosystem , Chlorophyll/analysis , Fluorescence , Environmental Monitoring , Seasons , Photosynthesis/physiology
7.
Glob Chang Biol ; 29(7): 2015-2029, 2023 04.
Article En | MEDLINE | ID: mdl-36600482

Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem-scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (ΨEWP ), a property that integrates the drought response of an ecosystem's plant community across the soil-plant-atmosphere continuum. Specifically, ΨEWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the ΨEWP of a Quercus-Carya forest from an "ecosystem pressure-volume (PV) curve," which is analogous to the tissue-level technique. When community predawn leaf water potential (Ψpd ) was above ΨEWP (=-2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψpd fell below ΨEWP , the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, ΨEWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall-induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψpd observations fell below ΨEWP , the forest is commonly only 2-4 weeks of intense drought away from reaching ΨEWP , and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom-up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of ΨEWP , and species in an ecosystem require compatible leaf-level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.


Carya , Quercus , Ecosystem , Droughts , Quercus/physiology , Trees/physiology , Forests , Water/physiology , Plant Leaves/physiology , Soil
8.
Glob Chang Biol ; 28(19): 5601-5629, 2022 10.
Article En | MEDLINE | ID: mdl-35856254

Inland waters serve as important hydrological connections between the terrestrial landscape and oceans but are often overlooked in global carbon (C) budgets and Earth System Models. Terrestrially derived C entering inland waters from the watershed can be transported to oceans but over 83% is either buried in sediments or emitted to the atmosphere before reaching oceans. Anthropogenic pressures such as climate and landscape changes are altering the magnitude of these C fluxes in inland waters. Here, we synthesize the most recent estimates of C fluxes and the differential contributions across inland waterbody types (rivers, streams, lakes, reservoirs, and ponds), including recent measurements that incorporate improved sampling methods, small waterbodies, and dried areas. Across all inland waters, we report a global C emission estimate of 4.40 Pg C/year (95% confidence interval: 3.95-4.85 Pg C/year), representing a 13% increase from the most recent estimate. We also review the mechanisms by which the most globally widespread anthropogenically driven climate and landscape changes influence inland water C fluxes. The majority of these drivers are expected to influence terrestrial C inputs to inland waters due to alterations in terrestrial C quality and quantity, hydrological pathways, and biogeochemical processing. We recommend four research priorities for the future study of anthropogenic alterations to inland water C fluxes: (1) before-and-after measurements of C fluxes associated with climate change events and landscape changes, (2) better quantification of C input from land, (3) improved assessment of spatial coverage and contributions of small inland waterbodies to C fluxes, and (4) integration of dried and drawdown areas to global C flux estimates. Improved measurements of inland water C fluxes and quantification of uncertainty in these estimates will be vital to understanding both terrestrial C losses and the "moving target" of inland water C emissions in response to rapid and complex anthropogenic pressures.


Carbon , Lakes , Atmosphere , Climate Change , Ecosystem , Rivers , Water
9.
New Phytol ; 236(2): 319-329, 2022 10.
Article En | MEDLINE | ID: mdl-35832001

In higher plants, photosystems II and I are found in grana stacks and unstacked stroma lamellae, respectively. To connect them, electron carriers negotiate tortuous multi-media paths and are subject to macromolecular blocking. Why does evolution select an apparently unnecessary, inefficient bipartition? Here we systematically explain this perplexing phenomenon. We propose that grana stacks, acting like bellows in accordions, increase the degree of ultrastructural control on photosynthesis through thylakoid swelling/shrinking induced by osmotic water fluxes. This control coordinates with variations in stomatal conductance and the turgor of guard cells, which act like an accordion's air button. Thylakoid ultrastructural dynamics regulate macromolecular blocking/collision probability, direct diffusional pathlengths, division of function of Cytochrome b6 f complex between linear and cyclic electron transport, luminal pH via osmotic water fluxes, and the separation of pH dynamics between granal and lamellar lumens in response to environmental variations. With the two functionally asymmetrical photosystems located distantly from each other, the ultrastructural control, nonphotochemical quenching, and carbon-reaction feedbacks maximally cooperate to balance electron transport with gas exchange, provide homeostasis in fluctuating light environments, and protect photosystems in drought. Grana stacks represent a dry/high irradiance adaptation of photosynthetic machinery to improve fitness in challenging land environments. Our theory unifies many well-known but seemingly unconnected phenomena of thylakoid structure and function in higher plants.


Embryophyta , Thylakoids , Carbon/metabolism , Cytochromes/metabolism , Embryophyta/metabolism , Photosynthesis/physiology , Photosystem II Protein Complex/metabolism , Thylakoids/metabolism , Water/metabolism
10.
New Phytol ; 234(4): 1206-1219, 2022 05.
Article En | MEDLINE | ID: mdl-35181903

Solar-induced Chl fluorescence (SIF) offers the potential to curb large uncertainties in the estimation of photosynthesis across biomes and climates, and at different spatiotemporal scales. However, it remains unclear how SIF should be used to mechanistically estimate photosynthesis. In this study, we built a quantitative framework for the estimation of photosynthesis, based on a mechanistic light reaction model with the Chla fluorescence of Photosystem II (SIFPSII ) as an input (MLR-SIF). Utilizing 29 C3 and C4 plant species that are representative of major plant biomes across the globe, we confirmed the validity of this framework at the leaf level. The MLR-SIF model is capable of accurately reproducing photosynthesis for all C3 and C4 species under diverse light, temperature, and CO2 conditions. We further tested the robustness of the MLR-SIF model using Monte Carlo simulations, and found that photosynthesis estimates were much less sensitive to parameter uncertainties relative to the conventional Farquhar, von Caemmerer, Berry (FvCB) model because of the additional independent information contained in SIFPSII . Once inferred from direct observables of SIF, SIFPSII provides 'parameter savings' to the MLR-SIF model, compared to the mechanistically equivalent FvCB model, and thus avoids the uncertainties arising as a result of imperfect model parameterization. Our findings set the stage for future efforts to employ SIF mechanistically to improve photosynthesis estimates across a variety of scales, functional groups, and environmental conditions.


Chlorophyll , Photosynthesis , Ecosystem , Fluorescence , Photosynthesis/physiology , Plant Leaves/physiology
11.
Plant Cell Environ ; 45(4): 1298-1314, 2022 04.
Article En | MEDLINE | ID: mdl-35098552

Solar-induced chlorophyll fluorescence (SIF) has been used to infer photosynthetic capacity parameters (e.g., the maximum carboxylation rate Vcmax , and the maximum electron transport rate Jmax ). However, the precise mechanism and practical utility of such approach under dynamic environments remain unclear. We used the balance between the light and carbon reactions to derive theoretical equations relating chlorophyll a fluorescence (ChlF) emission and photosynthetic capacity parameters, and formulated testable hypotheses regarding the dynamic relationships between the true total ChlF emitted from PSII (SIFPSII ) and Vcmax and Jmax . We employed concurrent measurements of gas exchanges and ChlF parameters for 15 species from six biomes to test the formulated hypotheses across species, temperatures, and limitation state of carboxylation. Our results revealed that SIFPSII alone is incapable of informing the variations in Vcmax and Jmax across species, even when SIFPSII is determined under the same environmental conditions. In contrast, the product of SIFPSII and the fraction of open PSII reactions qL , which indicates the redox state of PSII, is a strong predictor of both Vcmax and Jmax , although their precise relationships vary somewhat with environmental conditions. Our findings suggest the redox state of PSII strongly influences the relationship between SIFPSII and Vcmax and Jmax .


Chlorophyll , Plant Leaves , Chlorophyll A , Electron Transport , Fluorescence , Photosynthesis
12.
Tree Physiol ; 42(4): 848-861, 2022 04 07.
Article En | MEDLINE | ID: mdl-34617116

The induction and relaxation of photochemistry and non-photochemical quenching (NPQ) are not instantaneous and require time to respond to fluctuating environments. There is a lack of integrated understanding on how photochemistry and NPQ influence photosynthesis in fluctuating environments. We measured the induction and relaxation of chlorophyll a fluorescence and gas exchange in poplar and cotton at varying temperatures under saturating and fluctuating lights. When the light shifted from dark to high, the fraction of open reaction centers in photosystem II (qL) gradually increased while NPQ increased suddenly and then remained stable. Temperature significantly changed the response of qL but not that of NPQ during the dark to high light transition. Increased qL led to higher photosynthesis but their precise relationship was affected by NPQ and temperature. qL was significantly related to biochemical capacity. Thus, qL appears to be a strong indicator of the activation of carboxylase, leading to the similar dynamics between qL and photosynthesis. When the light shifted from high to low intensity, NPQ is still engaged at a high level, causing a stronger decline in photosynthesis. Our finding suggests that the dynamic effects of photochemistry and NPQ on photosynthesis depend on the phases of environmental fluctuations and interactive effects of light and temperature. Across the full spectra of light fluctuation, the slow induction of qL is a more important limiting factor than the slow relaxation of NPQ for photosynthesis in typical ranges of temperature for photosynthesis. The findings provided a new perspective to improve photosynthetic productivity with molecular biology under natural fluctuating environments.


Chlorophyll , Photosynthesis , Chlorophyll A , Fluorescence , Photosynthesis/physiology , Photosystem II Protein Complex , Temperature
13.
J Adv Model Earth Syst ; 14(12): e2022MS003174, 2022 Dec.
Article En | MEDLINE | ID: mdl-37035629

We introduce two new drought stress algorithms designed to simulate isoprene emission with the Model of Emissions of Gases and Aerosols from Nature (MEGAN) model. The two approaches include the representation of the impact of drought on isoprene emission with a simple empirical approach for offline MEGAN applications and a more process-based approach for online MEGAN in Community Land Model (CLM) simulations. The two versions differ in their implementation of leaf-temperature impacts of mild drought. For the online version of MEGAN that is coupled to CLM, the impact of drought on leaf temperature is simulated directly and the calculated leaf temperature is considered for the estimation of isoprene emission. For the offline version, we apply an empirical algorithm derived from whole-canopy flux measurements for simulating the impact of drought ranging from mild to severe stage. In addition, the offline approach adopts the ratio (f PET) of actual evapotranspiration to potential evapotranspiration to quantify the severity of drought instead of using soil moisture. We applied the two algorithms in the CLM-CAM-chem (the Community Atmosphere Model with Chemistry) model to simulate the impact of drought on isoprene emission and found that drought can decrease isoprene emission globally by 11% in 2012. We further compared the formaldehyde (HCHO) vertical column density simulated by CAM-chem to satellite HCHO observations. We found that the proposed drought algorithm can improve the match with the HCHO observations during droughts, but the performance of the drought algorithm is limited by the capacity of the model to capture the severity of drought.

14.
PNAS Nexus ; 1(2): pgac046, 2022 May.
Article En | MEDLINE | ID: mdl-36713313

Artificial light at night (ALAN), an increasing anthropogenic driver, is widespread and shows rapid expansion with potential adverse impact on the terrestrial ecosystem. However, whether and to what extent does ALAN affect plant phenology, a critical factor influencing the timing of terrestrial ecosystem processes, remains unexplored due to limited ALAN observation. Here, we used the Black Marble ALAN product and phenology observations from USA National Phenology Network to investigate the impact of ALAN on deciduous woody plants phenology in the conterminous United States. We found that (1) ALAN significantly advanced the date of breaking leaf buds by 8.9 ± 6.9 days (mean ± SD) and delayed the coloring of leaves by 6.0 ± 11.9 days on average; (2) the magnitude of phenological changes was significantly correlated with the intensity of ALAN (P < 0.001); and (3) there was an interaction between ALAN and temperature on the coloring of leaves, but not on breaking leaf buds. We further showed that under future climate warming scenarios, ALAN will accelerate the advance in breaking leaf buds but exert a more complex effect on the coloring of leaves. This study suggests intensified ALAN may have far-reaching but underappreciated consequences in disrupting key ecosystem functions and services, which requires an interdisciplinary approach to investigate. Developing lighting strategies that minimize the impact of ALAN on ecosystems, especially those embedded and surrounding major cities, is challenging but must be pursued.

15.
Glob Chang Biol ; 27(12): 2914-2927, 2021 Jun.
Article En | MEDLINE | ID: mdl-33651464

Vegetation phenology in spring has substantially advanced under climate warming, consequently shifting the seasonality of ecosystem process and altering biosphere-atmosphere feedbacks. However, whether and to what extent photoperiod (i.e., daylength) affects the phenological advancement is unclear, leading to large uncertainties in projecting future phenological changes. Here we examined the photoperiod effect on spring phenology at a regional scale using in situ observation of six deciduous tree species from the Pan European Phenological Network during 1980-2016. We disentangled the photoperiod effect from the temperature effect (i.e., forcing and chilling) by utilizing the unique topography of the northern Alps of Europe (i.e., varying daylength but uniform temperature distribution across latitudes) and examining phenological changes across latitudes. We found prominent photoperiod-induced shifts in spring leaf-out across latitudes (up to 1.7 days per latitudinal degree). Photoperiod regulates spring phenology by delaying early leaf-out and advancing late leaf-out caused by temperature variations. Based on these findings, we proposed two phenological models that consider the photoperiod effect through different mechanisms and compared them with a chilling model. We found that photoperiod regulation would slow down the advance in spring leaf-out under projected climate warming and thus mitigate the increasing frost risk in spring that deciduous forests will face in the future. Our findings identify photoperiod as a critical but understudied factor influencing spring phenology, suggesting that the responses of terrestrial ecosystem processes to climate warming are likely to be overestimated without adequately considering the photoperiod effect.


Photoperiod , Trees , Climate Change , Ecosystem , Europe , Plant Leaves , Seasons , Temperature
16.
Tree Physiol ; 41(8): 1450-1461, 2021 08 11.
Article En | MEDLINE | ID: mdl-33595079

The percentage of respiratory and photorespiratory CO2 refixed in leaves (Pr) represents part of the CO2 used in photosynthesis. The importance of Pr as well as differences between species and functional types are still not well investigated. In this study, we examine how Pr differs between six temperate and boreal woody species: Betula pendula, Quercus robur, Larix decidua, Pinus sylvestris, Picea abies and Vaccinium vitis-idaea. The study covers early and late successional species, deciduous broadleaves, deciduous conifers, evergreen conifers and evergreen broadleaves. We investigated whether some species or functional types had higher refixation percentages than others, whether leaf traits could predict higher Pr and whether these traits and their impact on Pr changed during growing seasons. Photosynthesis CO2 response (A/Ci)-curves, measured early, mid and late season, were used to estimate and compare Pr, mesophyll resistance (rm) and stomatal resistance (rs) to CO2 diffusion. Additionally, light images and transmission electron microscope images were used to approximate the fraction of intercellular airspace and cell wall thickness. We found that evergreens, especially late successional species, refixed a significantly higher amount of CO2 than the other species throughout the entire growing season. In addition, rm, rs and leaf mass per area, traits that typically are higher in evergreen species, were also significantly, positively correlated with Pr. We suggest that this is due to higher rm decreasing diffusion of (photo) respiratory CO2 out of the leaf. Cell wall thickness had a positive effect on Pr and rm, while the fraction of intercellular airspace had no effect. Both were significantly different between evergreen conifers and other types. Our findings suggest that species with a higher rm use a greater fraction of mitochondria-derived CO2, especially when stomatal conductance is low. This should be taken into account when modeling the overall CO2 fertilization effect for terrestrial ecosystems dominated by high rm species.


Carbon Dioxide , Ecosystem , Mesophyll Cells , Photosynthesis , Plant Leaves , Wood
17.
New Phytol ; 229(5): 2413-2445, 2021 03.
Article En | MEDLINE | ID: mdl-32789857

Atmospheric carbon dioxide concentration ([CO2 ]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2 ] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2 ]-driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2 ] (iCO2 ) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2 , albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.


Carbon Sequestration , Ecosystem , Atmosphere , Carbon Cycle , Carbon Dioxide , Climate Change
18.
Glob Chang Biol ; 27(6): 1144-1156, 2021 Mar.
Article En | MEDLINE | ID: mdl-33002262

Effective use of solar-induced chlorophyll fluorescence (SIF) to estimate and monitor gross primary production (GPP) in terrestrial ecosystems requires a comprehensive understanding and quantification of the relationship between SIF and GPP. To date, this understanding is incomplete and somewhat controversial in the literature. Here we derived the GPP/SIF ratio from multiple data sources as a diagnostic metric to explore its global-scale patterns of spatial variation and potential climatic dependence. We found that the growing season GPP/SIF ratio varied substantially across global land surfaces, with the highest ratios consistently found in boreal regions. Spatial variation in GPP/SIF was strongly modulated by climate variables. The most striking pattern was a consistent decrease in GPP/SIF from cold-and-wet climates to hot-and-dry climates. We propose that the reduction in GPP/SIF with decreasing moisture availability may be related to stomatal responses to aridity. Furthermore, we show that GPP/SIF can be empirically modeled from climate variables using a machine learning (random forest) framework, which can improve the modeling of ecosystem production and quantify its uncertainty in global terrestrial biosphere models. Our results point to the need for targeted field and experimental studies to better understand the patterns observed and to improve the modeling of the relationship between SIF and GPP over broad scales.


Chlorophyll , Ecosystem , Chlorophyll/analysis , Environmental Monitoring , Fluorescence , Photosynthesis , Sunlight
19.
J Exp Bot ; 71(22): 7179-7197, 2020 12 31.
Article En | MEDLINE | ID: mdl-32902638

Photosynthetic capacity (leaf maximum carboxylation rate, Vcmax) is a critical parameter for accurately assessing carbon assimilation by plant canopies. Recent studies of sun-induced chlorophyll fluorescence (SIF) have shown potential for estimating Vcmax at the ecosystem level. However, the relationship between SIF and Vcmax at the leaf and canopy levels is still poorly understood. In this study, we investigated the dynamic relationship between SIF and Vcmax and its controlling factors using SIF and CO2 response measurements in a rice paddy. We found that SIF and its yield (SIFy) were strongly correlated with Vcmax during the growing season, although the relationship varied with plant growth stages. After flowering, SIFy showed a stronger relationship with Vcmax than SIF flux at both the leaf and canopy levels. Further analysis suggested that the divergence of the link between SIF and Vcmax from leaf to canopy are the result of changes in canopy structure and leaf physiology, highlighting that these need to be considered when interpreting the SIF signal across spatial scales. Our results provide evidence that remotely sensed SIF observations can be used to track seasonal variations in Vcmax at the leaf and canopy levels.


Oryza , Chlorophyll , Ecosystem , Fluorescence , Photosynthesis , Plant Leaves , Seasons
20.
Plant Physiol Biochem ; 155: 330-337, 2020 Oct.
Article En | MEDLINE | ID: mdl-32798901

Mesophyll resistance to CO2 diffusion (rm) and the maximum carboxylation rate of Rubisco (Vcmax) affect photosynthetic rates, and can potentially also influence the percentage of respiratory and photorespiratory CO2 being refixated (Pr) by mesophyll cells. Here we investigated how various leaf anatomical traits (e.g. leaf mass per area [LMA] and leaf dry matter content [LDMC]) influenced rm in leaves of mature forest trees. We further explored how rm and Vcmax in turn affected Pr, and if these traits varied among species and leaves along a light gradient. Photosynthetic CO2 response of leaves grown in high-, medium-, and low-light environments was measured, from Pinus sylvestris [Scots pine], Picea abies [Norway spruce], Quercus robur [English oak], and Betula pendula [Silver birch] in southern Sweden. A modified version of the Farquhar-von Caemmerer-Berry model was fitted to the leaf gas exchange data to estimate Vcmax, rm and Pr. We found that of all leaf traits measured, only LMA for Q. robur was significantly higher in leaves from high-light environments. When comparing species, both rm and LMA were significantly higher in the conifers, and rm had a negative correlation with Vcmax. We found that Pr was similar between different species and functional groups, with an average of 73.2% (and SD of ±10.4) across all species. There was a strong, positive correlation between Pr and Vcmax in broadleaves, and we hypothesise that this effect might derive from a higher CO2 drawdown near Rubisco in leaves with high Vcmax.


Carbon Dioxide/metabolism , Ribulose-Bisphosphate Carboxylase , Trees , Forests , Photosynthesis , Plant Leaves/anatomy & histology , Plant Leaves/enzymology , Ribulose-Bisphosphate Carboxylase/metabolism , Sweden , Trees/enzymology
...